632

4. BRIGNELL A.S., Solute extraction from an internally circulating spherical liquid drop.
Int. J. Heat Mass Transfer, Vol.18, No.l, 1975.

5. SIH PING HUEI and NEWMAN J., Mass transfer to the rear of a sphere in Stokes flow., Int.
J. Heat Mass Transfer, Vol.lo, No.l2, 1967.

6. CHAO B.T., Transient heat and mass transfer to translating droplet. Trans. ASME, Ser. C.
J. Heat Transfer, Vol.91, No.2, 1969.

7. RUCKENSTEIN E., Unsteady mass transfer near fluid-liquid interfaces. Chem. Engng. Sci.
Vol.25, No.1ll, 1970.

8. POLIANIN A.D. and PRIADKIN P.A., On unsteady convection heat and mass exchange in fluid
at high P&clet numbers. PMTF, No.6, 1981.

9. GOLOVIN A.M. and ZHIVOTIAGIN A.F., The effect of volume chemical reaction on mass transfer
inside a drop at high Paclet numbers. Vestn. MGU, Ser. 1, Matem. Mekhan., No.4, 1979.

10. JOBNS L.E. and BECKMANN R.B., Mechanism of dispersed-phase mass transfer in a viscous
single-drop extraction system. AIChE Journal, Vol.l2 No.l, 1966.

11l. BRAUER H., Unsteady state mass transfer through the interface of spherical particles, II.
Int. J. Heat Mass Transfer, Vol.2l, No.4, 1978,

12. BROUNSTEIN B.I. and RIVKIND V. Ia, The internal problem of mass and heat exchange with
closed streamlines at high Péclet numbers. Dokl. Akad. Nauk SSSR, Vol.260, No.6, 1981.

13. PRICE H.S., VARGA R.S. and WARREN J.E., Application of oscillation matrices to diffusion-
convection equations. J. Math. and Phys. Vol.45, No.3, 1966.

1l4. WATADA H., HAMIELEC, A.E. and JOENSON A.I., A theoretical study of mass transfer with
chemical reaction in drops. Canad. J. Chem. Eng., Vol.48, No.3, 1970.

Translated by J.J.D.

PMM U.S.S.R.,Vol.47,No.5,pp. 632-638,1983 0021-8928/83 $10.00+0.00
Printed in Great Britain ©® 1985 Pergamon Press Ltd.
uDC 539.3

THE METHOD OF DISCRETE SINGULARITIES IN PLANE PROBLEMS
OF THE THEORY OF ELASTICITY*

S.M. BELOTSERKOVSKII, I.K. LIFANOV, and M.M. SOLDATOV

Plane problems of the theory of elasticity are reduced to sets of singular
integral equations for which a direct method of solution is developed,
similar to the method of discrete vortices used in aerodynamics. Numerical
solutions of a number of plane problems of the theory of elasticity are
considered, stable numerical solutions are obtained, and their convergence
is proved.

When solving problems of the theory of elasticity by reducing them to integral equatioas,
the tendency usually was to get away from the singular integral equations (SIE), and to reduce
them to regular integral equations of the first or second kind /1,2/. A similar situation
occurs when solving other problems, for example, in electrodynamics /3/. It appeared, however,
that numerical solutions of reqular integral equations of the first kind on a computer were
unstable. Regular integral equations of the second kind, obtained in the theory of elasticity,
possess eigenfunctions /2/, and therefore their numerical solution on a computer by direct
methods is also unstable. 1In view of these inconveniences in reducing the problems to regular
integral equations, they are reduced to SIE, for which a stable method (the method of "discrete
vortices" /4/) for their numerical solution has been developed.

Below, a similar approach is developed for solving plane problems of the theory of elas-
ticity. These problems for bounded simply connected regions, whose boundary is a closed
Liapunov curve, are reduced to SIE of the first kind with Hilbert kernels in complex conjugate
functions. The conditions are obtained that ensure the uniqueness of the solution of these
equations. The equations are solved numerically using the method of discrete singularities,
which is a development of the method of discrete vortices. The idea of this method consists
in exchanging the set of SIE for a set of linear algebraic equations in unknown functions
with boundary points selected in some special way, and speciallly situated in relation to points
at which the values of the required functions are found.

*pPrikl.Matem. Mekhan ,47,5,781-789,1983
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The numerical solution of the second basic problem (the stresses are given on the boundary)
is specifically considered for a circle for various loads, either continuous or concentrated

at a finite number of points of application of the forces. Stable numerical solutions are
obtained for these when there is one or more axes of symmetry, as well as when there is none,
and the convergence of the solutions is proved. A new method is developed which is convenient
for computer calculation for solving overspecified sets of linear algebraic equations that
replace SIE.

1. The solution of plane problems of the theory of elasticity when there are no volume
forces reduces to determining two analytic functions /2,5/ (e.g., ¢, V), that satisfy the
boundary condition e

e () —t9 () —$ @) =f (), t& L, k=12 (1.1)
on the contour L bounding the region D. 1If condition (1.1) is defined in displacements, then
k=1,% =% where the quantity x» is defined in /2/, and

fi=2 p@+iv (1.2)

where p is the shear modulus and u,v are the displacements. If condition (l.1) is specified
in stresses, then k = 2, %, = —1 and

s
fome — 1 § (Oay + i) ds + 2 (1.3)
&
(the notation is given in /2/).
2. It is proposed to seek the analytic functions @ (2),% (z2) irn the form
P = [ S0, p)= o [ EO=MWB g ,ep (2.1)
where the auxiliary function (DZ) is obtained fro; (1.1) in the form of the integral equation
”"—cm(t)+—;-u",-§ mT(‘r)dt + 2m S wi(i)%j +_E8m(t)d( )==f,,(t) (2.2)

with the complex parameter ¢ whose selection enables the problem to be reduced to various
types of equations.

when ¢ = — %, we obtain the Fredholm integral equation due to Muskhelishvili /5/.
ukm(t)—{—%Sm(t)d(lnT—f)—l-imi—gm(t)d( =) =h) (2.3)
L

A direct solution of Eq. (2.3) by the method of mechanical quadratures is difficult due
to the presence of an eigenfunction, which results in a degenerate set of linear algebraic
equations and to unstable values of the unknown function.

Similar difficulties occur when the problem is reduced to other regular integral equations
of the Muskhelishvili and Sherman and Lauricelli type /2,6/. Various methods were considered
for eliminating this difficulty /2/, e.g. fixing e at some points and eliminating the corresp-
onding equations, and the use of the error of quadratic formulas to improve the structure of
the algebraic equation.

When ¢ =0, Eq.(2.2) becomes a degenerate SIE of the second kind. A non-degenerate SIE
of the second kind can be obtained, for instance, when ¢ =i. Here we investigate the red-
uction to a SIE of the first kind, which is possible when ¢ = %. Then, we obtain from (2.2)

Sn)(‘t)Re( )+-E-Sm(1)d( =) =h) - (2.4)

Note that SIE (2.4) is an equation with a Hllbert kernel.
Indeed, let the region D be simply connected and the contour L that bounds it be smooth
(a Liapunov one), i.e. its parametric equation z==z(n),y=y M is such that =z ), yMm, 2 and
y'(n) are 2a-periodic functions belonging to the HOlder class /7/. Note that

dt_ \_ (3—=o)+y (¥ — %)
Ro (27 )= R G - e A5 B v (2.3

NS 102a], 7=z + iy, 2= 2o + iy, To = z (&), 4o = ¥ (})

As follows from /7/, the function By, §) belongs to the HSlder class. It can be shown
that it is periodic in % and } of periodic 2rx and B ( & =05  This implies that the kernel
of (2.5) can be represented in the form of the sum of a Hilbert kernel and a regular kernel,

3. We shall investigate the properties of SIE (2.4) when L is a circle. On a circle SIE
(2.4) has the form
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25
ka m(ﬂ)ctzxf'i dn-—iS @ (n) ™8 dn = 2nif, () (3.1)
o

0

For the internal problem in stresses the vector of the external forces and the vector of
the moment must vanish. Hence Eq.(3.l) must be supplemented by conditions on its right-hand
side. The condition for the vector of the external forces to vanish requires uniqueness of

fa (%), in whose presence it is automatically satisfied. For the function j, to be unique
its periodicity in L is necessary, then

f2(0) = fo (L) (3.2)
and in problems on a circle

fo (B) = fo 2k + E)i k = 0, =1, £2, ... (3.3)

It is evident from (3.1) that condition (3.3) does not impose restrictions on the function

The condition for the vector of the moment of the external forces to vanish /2/
Re§f—.(t)'dt=0 (3.4)

on a circle reduces, in relation to the function @, using (3.1) for % =x, = — 1, to the
relation

N
—mgﬁﬂﬁﬂ+mmwﬂwn=§ﬁﬁm.t=ﬂﬁ

where on the left~hand side we have a purely imaginary expression for all ®; hence condition
(3.4) does not impose any restrictions ocn o.

Continuing the investigation of the problem on a circle, we see that the homogeneous
equation (3.1), when f, =0, has eigensolutions whose form is established, for example, from
the representation of w(n) in the form of a Fourier series. The eigenfunctions of the hom-
ogeneous equation (3.1) and (2.4) are the complex constant

w=a++ib (3.5)

and, when k = 2 the function
@ (n) = iaetn (3.6)
for the homogeneous equation (3.1), and for Eq. (2.4) the function
® (1) = iagt
To obtain a problem defined uniquely, it is necessary to proceed either as in /2/ or, as

proposed below, the SIE must be solved together with some supplementary conditions that “will
not pass" the eigenfunctions (3.5) and (3.6). The following conditions have this property:

Sﬂf{idn—-_—o, k=1,2; S[Eé‘ldt+@d7]=0, k=2 (3.7)
L L

Sherman /2,6/ introduced as supplementary terms, the left-hand sides of Egs.(3.7) in
integral equations of the type (2.3) to ensure the uniqueness of the solution. On a circle

conditions (3.7) are written as
an

(omdn=0, k=1,2 (3.8)
[}

2

m{ G@endn =0, k=2
0

and, consequently, @ in the form (3.5) does not satisfy the first of Egs.(3.8), and in the
form (3.6) it does not satisfy the second of Egs. (3.8).

Besides, Eq.(3.1) has the property that the integral with respect to } from 0 to 2n
on the left-hand side is zero, and consequently the right-hand integral of (3.1) must also

be zero an
{re®dt=0 (3.9)
[1]

which results in the requirement that the real, as well as the imaginary parts of function f,
must be zero. Condition (3.9), when solving the problem in stresses, determines the complex
constant ¢, in (1.3), and when solving the problem in displacements, relation (3.9) is aut-~
omatically satisfied for the function f, which is analytic in the region D and continuous on
L. For the circle, condition (3.4) leads to the relation
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§ Unsin—froos) dE =0 (fa={r - ifs) (3.10)

]

For an arbitrary smooth contour L, by integrating (24) with respect to {, the parameter
of the given contour L, we obtain the relation

5m§>d§=o (3.11)

which is similar to condition (3.9) on the circle.

Thus the second basic problem for a region bounded by a closed smooth contour L reduces
to the integral equation (2.4) and conditions (3.2),(3.4),(3.7), and (3.11) from which the -
function @ is determined, and when L is a circle, respectively to (3.1),(3.2), and (3.8)-(3.10),
where the SIE has a singularity of the form ctgl(n — §)/2]. This singularity of the SIE is
preserved as shown above, in problems of arbitrary regions bounded by a smooth contour, but
the regular part of the SIE changes.

4. We shall demonstrate the method of discrete singularities for Eq.(3.1) supplemented
by conditions (3.3), and (3.8)-(3.10), setting &k =2, i.e. % = —1. For this we separate
the real and imaginary parts in (3.1) and (3.8). We obtain the set of equations (the integrals
are taken from 0 to 2m)

S"’" ) [ctg ";a —sin(n +E)]dn+Sw:(n)cosm + 8 dn= 2af; §) (4.1)

fon meosn+Ban+ (orm[cte 152 +sinn+b]dn=—2n/z @

S"Jn {(n)dn=0, Sw:(n)dn=0
§[or (W) sinn — oy (1) cos ) dn =0

where the subscript R denotes the real part of the respective function and I the imaginary
part.
Let us, first, assume that the functions jfr(n) and f;(n) belong to the HSlder class on
[0, 2n}. Let the points n; (i =14,...,n), taken as points of a unit circle, divide the circle
into n equal parts, and the points %; be the midpoints of the arcs MiMi+1-. We now replace
the set of integral equations (4.1) for k=2 by the following set of linear algebraic equ-
ations:

Zmnx () [ctg-n%i—sin(m_+ §;)] -2,’,—'+ (4.2)
Y wnr () cos (s + &) 2+ By + By costy = 2011 )

3 ) cos 1+ 8922+ 3 our () [t B35
sin (1 + §) | 2 + Ba + Ps sin; = — 2nfp &)

Zm(m)i,,"—=0, anr (m)—z;,“—=0

Z[mna(m)sinm—wm(ne)cosni]—?;,”—==0; j=1,....n

where the summation is carried out over i from 1 to n, and §;,B, and P, are regularizing
factors /8/.

Without the unknown f,, fs and P, (4.2) is overspecified (i.e. the number of equations
is greater than the number of unknowns) and may generally be incompatible due to computational
errors. However, even if it is compatible, it is difficult to find the three equations that
must be rejected for it to become definable. The introduction of the unknowns §,, B, and s
makes the system determinate and non-degenerate. The factors §,, p, and B, approach zero as

n—>oo if and only if conditions (3.9) and (3.10) are satisfied.
Summing the first n equations of (4.2), we obtain

n n n
1 2 1 2r n
= B DOm0 o S+ Yy 0ut () oS B+ B Se= Y G 2 (4.3)
o]

1=l Jea}

(8= Y sinem o+ 2, 5= icosm,.ﬂj) =

=l =)
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50=3 cost, 22)

j=1

where -the sums S, S.i, S, are zero for odd n and approach zero as n—o for arbitraryn, since
they approximate the respective integrals. By virtue of condition (3.9) the sum on the right-
hand side of (4.3) also approaches zero as n — .

We thus find that (4.3) can be written in the form

By + @y By = o 4y, 2y — 0 as n — 0 (4.4)
Similarly", summing the following n equations, we obtain
By + @Bs = ag; 25, 2y =0 as n— o0 (4.5)
If we now multiply the first n equations by cos §;(j=1,...,n) and the second n equation by
sin(j=1,...,n, and add all 2n equations, taking condition (3.1) into account, we obtain
agfy + afy + (1 + a)fy = ay {4.6)

@y, O4, Ay, 05 — 0 ag n—

From Eqs. (4.4)~(4.6) we obtain the statement concerning §,, f, and §; made above.

Note that the regularizing factors f,, 8, and Bs; can be introduced in other ways so that
the condition for them to approach zero as n-» oo is satisfied, and the system remains non-
degenerate. For instance, we can take f,,E;Bs and Ep2B,, in the first n equations, and f,,
2+ &) Br, (2n + E))® B3 in the subsequent n equations.

The approximation of the integral with ctg {(n —§)/2] on the segment [(,2x] by the sums con-
sidered above follows from /8/. From the same paper it follows that for a characteristic SIE
of the first kind with kernel ctg I(n — §)/2] Egs. (4.2) can be similarly transformed into a set
of linear algebraic equations for the regular Fredholm equation of the second kind, which has
a unique solution, since Eqs.(4.l) have a unique solution. From this we obtain that Eqgs. (4.2)
are non-degenerate and their solution approaches the solution of integral equations (4.1). Then,
if fr(E) and f;(§) belong to the classH (@)/5/ and n is an arbitrary positive integer, we have

| @r () — @ng (N4) | < Oy (R 10 1) (4.7
 or (M) — @z () | < 0 (R 10 1)

If however, n is odd and fz"(§), fi" (§) belongs to the class H (), it follows from /7/ that
on the right-hand sides of inequalities (4.7) there are quantities of the order of (ln n)/n™+>,

In the problem of loading by concentrated forces applied uniformly over a circle the
functions fp(}) and f;(§) have discontinuities of the first kind at the points where the
forces are applied. The calculation points §; were located at these points, where the arith-
metic mean of the one-sided limits for fg (§) and f; (§) were taken. The remaining points &
divided the circle into equal parts, and the points mw;, i =1,..., 7 were taken in the middle
of these parts.

when the problem has axes of symmetry, the set of integral equations (4.1) can be trans-
formed into a set of SIE of the first kind on a segment: some or all of the integral conditions
on @ are then satisfied. When solving the set of SIE numerically along the segment, it is
necessary to observe the following rule for the arrangement of the calculation points g, and
discrete singularities m; on the segment of integration. This was cbtained for one SIE of the
first kind on the segment from heuristic considerations and numerical calculations in /4/ and
was mathematically justified in /9/. Closest to the end of the segment at which the solution
is unbounded is a discrete singularity, while nearest to the end of the segment at which the
solution is bounded is a calculation point. In the case of (2.4) in the functions g and w1,
this rule must be applied in each equation with respect to that unknown function for which
this equation is singular.

Thus, generally, it is necessary to take for wgp and o their proper sets of points Tgi
and nr;. Examples of numerical solutions of (4.2) are given in Figs,l and 2.

A stable calculation and good convergence were obtained in all cases when the order of the
system investigated was increased from 30 to 110. This was confirmed by comparison with the
exact solution.

5. as an example, a continuocus load was considered for which in Egs.{4.1) the right-hand
sides are the trigoncmetric functions fp=sin§, f;=cos§ (problem 1). In that case the functions
@p =sinm, w;=cosn are exact solutions of Egs. (4.1). These values were compared with the
results obtained for this problem using the method of discrete singularities. Solution of Egs.
(4.2) for all a3 (with =ny,, =54), when the general order N of Egs.(4.2) was equal to 2n 43,
yielded the following results: the values of .5 0 at the points at which they are defined
are the same as the analytic solutions, and the regularizing factors §,, f, B; are zero.
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The numerical experiment has, thus, shown the absolute convergence of the method of
discrete singularities for Egs. (4.1) with the continuous right~hand side considered.

We then considered loading the circle by two concentrated loads applied at diametrically
opposite points (problem 2, Fig.l). This problem
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was solved by the method of discrete singularities both by introducing three regularizing
factors (Egs.(4.12)), and by omitting one calculation point away from the points of discon-
tinuity on the right-hand side of the system, which enables only one regularizing factor to
be introduced. Both solutions are virtually the same, possessing good convergence with res-
pect to N=2n4+3. Calculations in which three regularizing factors are introduced are
shown in Fig.l, where curves 1,2,3,4 correspond to the functions ag, @y Aeje;, Awg/ag, and
Awp, Aw; are respectively the remainders of the functions w,p, ©, calculated for

the current n.

The solution of problem 2 is even for the function wp(n) and odd for the function (.
Taking this into account, we reduce (4.l1) to a set of SIE on the segment |0, xl

npex and

sin & {{ ap (mi(cos n — cos &y + cos my dn + { oy () sinmen} = — iy () (5.1)
c0s & § wg () cos mén -+ § w7 (n)l(cos 1 — cos &)+ — cos &) sinmn = n (B)
SmR (Mm)dy=10

where the last two of the three integral conditions in (4.l1) are now identically satisfied.
The application of the method of discrete singularities to Egs.(5.l1) requires the rule defined
above for the arrangement of calculation peints and discrete singularties to be satisfied.

Comparison of the solutions of Egs.(5.1) and (4.2) for problem 2 shows good agreement
of the functions e,; and w«, for corresponding n, and also their rapid convergence with
respect to n.

Problem 2 may be reduced to a set of SIE on the segment [0, /2], if the property of
symmetry of o, and reverse symmetry of wp about the vertical axis is used.

Taking these properties into account, we can reduce Egs.(5.1) to a set of SIE on the
segment {0,a/2] for problems on a circle with two perpendicular axes of symmetry

sin & {{ wp () c0sn [(costn— conrtyt - t1an + { oy stanan} = 5 1, @) (5.2)

cos E{S g (1) cos ndn — S ©r (1) sin v [(cos* n — cos* )1 4- 1] dn} = ; (€

Equations (5.2) do not contain supplementary integral conditions, since now all of them,
taking the two axes of symmetry into account, are satisfied identically.

The loading of the circle by three equal concentrated radial forces applied at equal
distances from one another (problem 3, Fig.2) was also considered. In this case, the solution
of Eqgs.(4.2) was derived using the method of discrete singularities, where the right~hand side
of the equations was determined taking condition (3.9) into account. The solution and its
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convergence with respect to N are shown in Fig.2, where the notation for the curves is the
same as in Fig.l. With the obvious selection of the origin of the coordinate ¢, this problem
has a horizontal axis of symmetry relative to which the function oy is even and o; odd. This
enables problem 3 to be reduced to Egs.(5.1).

6. If the first basic problem is considered on the circle, i.e. the digplacements are
specified at the boundary, it is necessary to consider another system instead of Egs.(4.1),
since the function (3.6) is not aneigenfunction of the homogeneous equation (3.1) when ¥ =
+ 1 (integration is carried out in the limits 0 to 2n)

§or () [xctg 15E + sinn + 8 | dn — (6.1)
{ormeosn+gan=—2nu®

— {or Moosn+pan+
o (n) i otg 252 — sin (n + 8) | dn=2nfix @)

(or mdan=0, (ormydn=0

when condition (3.9) is imposed on the right-hand sides. This set of equations has a unique
solution for any %,% * 1 . The points n; and §; must be selected as above. This results
in the set of linear algebraic equations

Zma (n) [ulctgl)-‘—_-ra"+sin(m+§,~)]—2—:——— (6.2)
Y, 01 () cos (n + &) 3 + b= — 2nfur )
— ¥ or (1 cos (ni+ 8) 2 +
nm+ aj R 2n
Y or () [ ovg 25t —sinny + &) | 22 4 fa = 2nf1n 89
20)3 (™) —2-:‘-= 0, th () -f:—-‘- =0

where the summation is over I from 1 to n.

As regards the regularizing factors f, and B, the convergence of the solution of Egs.
(6.2) to that of Egs.(6.l), and also the stability of solution (6.2), statements similar to
those made in Sect,.5 for the second basic problem, are true in this case.

Problems for any simply connected regions whose contour is smooth with a parametric eqg-
uation satisfying the conditions described in Sect.2, can be solved similarly. For the
solution it is only necessary to know the parametric specification of the contour of the
region.
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